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ABSTRACT: The publication of the ASHRAE “System Performance Evaluation and Design Guidelines for Displacement 
Ventilation” [0] has contributed to the wider acceptance of displacement ventilation (DV) as a ventilation strategy, by 
offering clear guidelines from an established organisation. A significant advantage of DVis that it lowers the supply air 
quantities required for cooling compared to conventional mixing ventilation (MV) at the same supply air temperature.This 
opens up opportunities for the use of passive (non refrigeration-cycle based) cooling sources, which typically are limited 
in supply air temperature and based on 100% fresh air supply when compared to conventional refrigeration-cycle based 
sources. This paper quantifies the impacts of using DVin comparison to MV on the peak capacity, size and humidity levels 
associated with the following passive cooling sources: evaporative cooling, two stage evaporative cooling, thermal stores 
and air to ground heat exchangers. Ageneric office building in Johannesburg, South Africa, is used as a model. The paper 
illustratesthe extent to which the use of DVexpands the ability of passive cooling strategies to serve spaces previously 
considered as having too high a heat load (when calculated using MV system guidelines). The paper however also 
recognises that passivecooling strategies are unlikely to be widely implemented until design guidelines exist from 
organizations similar to ASHRAE. 
Keywords: passive design strategies, displacement ventilation 
 

 
INTRODUCTION 
Based on the authors’ experiences as consultants in the 
built environment, conventional Heating Ventilation and 
Air Conditioning (HVAC) engineers keep to using clear 
guidelines and calculations methods provided by 
established organisations. It is unlikely that 
unconventional strategies and systems will be 
incorporated in a project in the absence of such 
guidelines or methods, unless it is a showcase project 
with sufficient resources to adequately investigate 
alternatives.  
 

Displacement ventilation (DV) can be seen as an 
example of this. While popular in Scandinavia [0], the 
American Society for Heating, Refrigeration and Air-
conditioning Engineers (ASHRAE) only recently 
released “System Performance Evaluation and Design 
Guidelines for Displacement Ventilation” [0], which 
provides generic DV sizing and design guidelines. This 
publication differs from existing supplier-specific DV 
design guidelines in that itprovides a simple ten-step 
guide to design the DV system [0]. While the authors 
have not found literature that documents the worldwide 
growth in the number of installed DV systems, since the 
ASHRAE publication was released they have found 
HVAC engineers in general to be more receptive to the 
use of DV for conventional projects.  
 

The aim of this paper is to illustrate the impacts of 
using DV in comparison tomixing ventilation (MV) on 

the peak capacity, size and humidity levels associated 
with various passive cooling strategies, informed by the 
ASHRAE DV guidelines. The intention is NOT to 
provide clear design guidelines for these passive 
strategies, but merely to demonstrate the implications of 
these strategies through quantitative analysis. 
 

Through this analysis it is demonstrated that a 
number of passive cooling strategies, considered 
impractical for MV applications, can potentially be of 
benefit in building designs utilising DV.The comparison 
also highlights the risk of over-design when conventional 
MV guidelines are used to design cooling sources for DV 
applications. 
 
 
DISPLACEMENT VS. MIXED VENTILATION 
DV introduces air at low level and low velocity, and at 
high supply air temperature (Ts),typically around 
18°C,when compared to conventional air conditioning 
systems which use MV.  The air that is slightly cooler 
than the intended room temperature runs along the floor 
until it reaches a heat load (Fig. 1). The heat load induces 
a plume of warmer air that rises due to lower density. 
This induces stratification in room temperature with the 
occupied area of the room within comfort conditions and 
the space near the ceiling at higher temperature 
conditions. The air near the ceiling is continually 
exhausted to prevent a build up of warm air into the 
occupied zone.   
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